
An Elegant Sufficiency: Load-Aware Differentiated
Scheduling of Data Transfers

Rajkumar Kettimuthu
Argonne National Laboratory

kettimut@anl.gov

Gayane Vardoyan
University of Massachusetts

gvardoyan@cs.umass.edu

Gagan Agrawal
The Ohio State University
agrawal.28@osu.edu

P. Sadayappan
The Ohio State University

sadayappan.1@osu.edu

Ian Foster
Argonne National Laboratory

foster@anl.gov

ABSTRACT
We investigate the file transfer scheduling problem, where trans-
fers among different endpoints must be scheduled to maximize per-
tinent metrics. We propose two new algorithms that exploit the
fact that the aggregate bandwidth obtained over a network or at
a storage system tends to increase with the number of concurrent
transfers—but only up to a certain limit. The first algorithm, SEAL,
uses runtime information and data-driven models to approximate
system load and adapt transfer schedules and concurrency so as
to maximize performance while avoiding saturation. We imple-
ment this algorithm using GridFTP as the transfer protocol and
evaluate it using real transfer logs in a production WAN environ-
ment. Results show that SEAL can improve average slowdowns
and turnaround times by up to 25% and worst-case slowdown and
turnaround times by up to 50%, compared with the best-performing
baseline scheme. Our second algorithm, STEAL, further leverages
user-supplied categorization of transfers as either “interactive” (re-
quiring immediate processing) or “batch” (less time-critical). Re-
sults show that STEAL reduces the average slowdown of interactive
transfers by 63% compared to the best-performing baseline and by
21% compared to SEAL. For batch transfers, compared to the best-
performing baseline, STEAL improves by 18% the utilization of
the bandwidth unused by interactive transfers. By elegantly ensur-
ing a sufficient, but not excessive, allocation of concurrency to the
right transfers, we significantly improve overall performance de-
spite constraints.

1. INTRODUCTION
Data volumes in science are growing exponentially, a trend that is
expected to continue and even accelerate. For example, state-of-
the-art detectors at light sources [10] generate tens of terabytes of
data per day, and future camera-storage bus technologies may in-
crease data rates by two orders of magnitude. Genomic data sets
are growing faster than Moore’s law [36]. The internationally dis-
tributed Earth System Grid Federation (ESGF) [53] provides access
to more than 1 PB of climate simulation and observation data—a
volume that will grow by orders of magnitude over the next decade.

While increased data volumes pose challenges for many areas of
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computer science, one issue that has received less attention is the
allocation of the multiple resources typically involved in end-to-
end data movement. Large datasets must often be transported over
wide-area networks (WANs) for analysis, visualization, or archiv-
ing. A single wide-area transfer may involve many resources at
the source, destination, and intervening points, including disks,
storage area networks (SANs), file systems, data transfer nodes
(DTNs) [22], SAN and WAN interfaces on DTNs, and campus net-
works, in addition to WAN links. These resources are all typically
shared, with disks, SANs, and file systems used by both file trans-
fers and local compute jobs. Campus network and WAN resources
are shared by file transfers that traverse associated DTNs and by
other external traffic that uses these network links. And although
network backbones are often overprovisioned, the same may not
be true of all resources in the end-to-end path. Depending on sys-
tem configuration, any resource involved in a WAN data movement
can be a bottleneck. Also, given predictions of science traffic’s
exponential growth, several recent studies [6, 9, 23] project that
network overprovisioning may not continue. The frequently bursty
nature [47, 50] of science traffic introduces further challenges.

Despite much work on accelerating individual file transfers (e.g.,
[31, 48, 49, 56]), the scheduling of multiple transfers to improve
both aggregate performance and the performance of individual flows
has received little attention [27]. In contrast, work on the con-
ceptually similar problem of executing parallel computational jobs
efficiently on supercomputers has motivated decades of work on
job scheduling [1, 15, 16, 24, 40, 46], and the development of so-
phisticated job scheduling algorithms that can optimize schedules
while also addressing other goals such as minimizing average slow-
down [25] and turnaround time, for a wide range of job types. The
need for rapid response in many applications means that relative
slowdown is often more important to users than absolute delay. For
example, a user will likely be less happy about a 10-second delay
to a 10-second task than to a 10-hour task. One can reduce average
relative slowdown by selectively delaying longer tasks.

The corresponding transfer scheduling problem introduces inter-
esting new challenges due to important differences between com-
putational jobs and file transfers, including the following. First,
in contrast to nodes on a supercomputer, the shared resources in-
volved in an end-to-end transfer are often not managed explicitly
as schedulable resources. Thus, alternative enforcement methods
are required, based for example on admission control of requests
rather than explicit resource allocation. Second, resources may be
subject to arbitrary external load that is neither under our control
nor directly visible to us; thus we must use different methods for de-
termining resource availability, such as monitoring of historical and
recent performance. Third, the aggregate bandwidth achieved over
a network or at a parallel storage system is typically greater when
multiple transfers occur at the same time [35, 37]. Thus, it can be
advantageous to schedule multiple transfers at once—or, if a sys-



tem is not saturated, to divide large files into multiple chunks that
can be communicated concurrently. Fourth, the benefits from such
increased concurrency do not grow beyond a threshold; indeed, all
transfers ultimately experience slowdown when concurrency is too
high [38, 57]. Thus, when one or more resources involved in data
transfers is/are heavily loaded, stalling some transfers until other
transfers finish can reduce average turnaround time.

We leverage these properties of transfers in two new algorithms
for the efficient scheduling of a set of transfers. The first is a load-
aware scheduling algorithm (SchEduler Aware of Load: SEAL) that
adaptively schedules file transfers using a strategy that monitors ex-
ternal load, and controls scheduled load, in order to minimize aver-
age slowdown across all transfers. This algorithm preempts and/or
delays transfers when in so doing it can reduce average slowdown
(for example, under heavy load). It increases the concurrency used
for a particular file transfer when in so doing it can increase aggre-
gate performance (for example, under low load).

The second algorithm (Scheduler TypE Aware and Load aware:
STEAL) supports differential treatment of two different transfer
types. What we call interactive transfers (e.g., remote analysis of
simulation and observational data) must be completed as soon as
possible; these transfers require best-effort service. In contrast,
batch transfers (e.g., certain data replication, backup, archiving
tasks) have more flexibility [7, 8, 47]; they may need only to be
completed within a certain window (e.g., 24 hours)—a window
that may be several times longer than the transfer time under av-
erage load. STEAL extends SEAL to enable batch transfers to use
bandwidth unused by interactive transfers, with minimal impact (in
terms of slowdown) on interactive transfer performance.

We experimentally evaluate SEAL and STEAL in a production
WAN environment comprising high-end computers at geographi-
cally disparate locations. In these experiments, we replay trans-
fers from real transfer logs that capture the large variations (in the
size and achievable bandwidth of individual transfers, and num-
ber of transfers over time) that are typical of high-end network
environments. We also add synthetic batch transfers when eval-
uating STEAL. We find that SEAL can improve average slowdown
and turnaround time by up to 25%, and worst-case slowdown and
turnaround time by up to 50%, relative to an efficient baseline
scheme. We also determine that when batch tasks are introduced,
STEAL reduces the average slowdown of interactive transfers by
63% compared to the best-performing baseline and by 21% com-
pared to SEAL. For batch transfers, it improves their usage of the
bandwidth unused by interactive transfers by 18% compared to the
best-performing baseline, while roughly matching SEAL (1.75%
degradation) on that metric.

2. MOTIVATION
We elaborate on two WAN transfer features that inform this work.

2.1 Endpoint Load Varies Greatly
We studied Globus GridFTP usage logs [30] for different 24-hour
periods for the 10 sites that transferred the most bytes during those
periods (we chose GridFTP because it is widely used for bulk data
transfer [12, 21]). This analysis revealed that traffic is typically
nonuniform, with bursts saturating system resources. Figure 1 shows
the number of concurrent transfers over one 24-hour period at a
busy site. During this period, the number of concurrent transfers
ranges from 0 to more than 100, with a mean of 45.7 and standard
deviation of 30.7. We observed similar trends in logs for other 24-
hour periods and sites, with the standard deviation of the number of
concurrent transfers ranging between 53% and 141% of the mean.
We conclude that any effective scheduling algorithm must be able
to deal with widely varying load levels.

2.2 Different Transfers Have Different Needs
While certain transfer requests must be processed rapidly, others

Figure 1: Distribution of file transfers for a loaded server. X-axis:
time in hours. Y-axis: average concurrency per 60-second interval.

can tolerate larger delays. Recent reports on science network re-
quirements [8, 11, 34] give replication as a common, often rela-
tively time-insensitive, reason for moving large quantities of data,
whether for performance [43, 53], fault tolerance [7], and/or preser-
vation [33]. Another motivator for delay-tolerant large-scale data
movement can be changes in storage system availability, such as
a storage system reaching capacity or shutting down, or a storage
allocation expiring [8].

As science data typically does not change rapidly, large transfers
for updating a replica can often tolerate delays. For example, the
cited reports describe replication use cases where TB datasets must
be delivered overnight. Because subsequent processing involves
manual steps, there is no advantage in completing the transfer ear-
lier. A terabyte of data can be transferred in under 45 minutes at 3
Gbps—a disk-to-disk WAN transfer rate that is commonly achieved
between endpoint pairs in today’s HPC environment. Thus, transfer
times can vary by at least an order of magnitude without compro-
mising science goals. Other use cases described in the reports have
similar ranges, with one requiring only that 100 TB be transferred
“within a month.”

Other well-known use cases involve interactive jobs. For exam-
ple, when a user requests a (set of) file(s) from a resource such as
ESGF with the goal of visualizing this data, they want the down-
load to be completed as soon as possible. The reports cited above
describe time-sensitive use cases in which data generated at ex-
perimental facilities and computer simulations must be moved to a
remote data analysis facility as soon as possible—for example, to
permit comparison, visualization, and/or validation.

We classify those transfers for which it is acceptable for transfer
times to be significantly (an order of magnitude) longer than aver-
age as batch transfers, and all other transfers as interactive trans-
fers. We will leverage the flexibility of batch transfers to improve
the performance of interactive transfers, while also maximizing
spare bandwidth utilization for batch transfers.

3. DATA TRANSFER SCHEDULING
We next discuss the challenges in scheduling wide-area transfers
and the approach we use to address these challenges.

3.1 Challenges in Scheduling
In parallel job scheduling, the total time needed to execute an un-
interrupted job is largely unaffected by other environmental factors
(I/O contention is an exception). In contrast, the time required for
wide-area file transfers can vary significantly due to interference
among different, often highly dynamic network flows.

The use of multiple TCP streams and concurrent file transfers is
often required in order to achieve file transfer rates close to network
speeds [35, 56]. However, indiscriminately increasing the number



of concurrent transfers for all files is rarely effective, because capa-
bilities at different sites can differ widely with respect to network
interface card (NIC) capacity, storage speed, CPU resources, and
WAN connectivity. Indeed, a powerful source that attempts to push
data too rapidly to a less powerful destination can greatly degrade
aggregate throughput—for example, performance declining by as
much as 40x when a buffer in an intervening router overflows [13].

We thus need adaptive methods that will increase concurrency
only for destinations that have not reached their physical limit.
When load is low, such methods can increase concurrency so as to
maximize utilization. When load increases, they should not sched-
ule new requests if in so doing total concurrency is increased above
a useful limit: instead, they should delay requests and/or reduce
the concurrency of ongoing transfers. Such methods can increase
aggregate end-to-end throughput while also ensuring that the re-
sponse times of individual transfer tasks remain reasonable. The
bursty nature of wide-area transfers provides significant opportu-
nities for such methods to improve both aggregate throughput and
average slowdown.

The current state of the art in file transfer scheduling is best-
effort. Each arriving transfer is scheduled unless a system-specified
concurrency limit is reached. For example, Globus transfers a max-
imum of two files concurrently with either two or four TCP streams
(depending on average file size) for each transfer [4]. This approach
has two disadvantages. First, under heavy load the completion
times of all transfer tasks can suffer, increasing average slowdown.
In comparison, scheduling only as many tasks as needed to satu-
rate the system can reduce completion time for those tasks without
much increase in completion time for other transfers. Second, not
increasing concurrency when the number of pending transfers is
small can reduce overall utilization. We address these limitations
via an algorithm that queues, preempts, and dynamically adjusts
transfer concurrency.

3.2 Metrics
We define distinct metrics for interactive and batch transfers.

3.2.1 Interactive File Transfers
In (compute) scheduling, average response time or turnaround time
(completion time – arrival time) has long been used as a measure
of scheduler quality [25]. More recently, job slowdown or stretch
has emerged as a more suitable measure. Job slowdown is the fac-
tor by which a job is slowed relative to the time it would take on
an unloaded system. This metric has been widely used to study
the performance of parallel job schedulers [25] and databases [45].
We choose (a variant of) it as the optimization metric in our work.
More specifically, we start with the bounded slowdown or BS met-
ric [25]. This metric, first introduced in the context of parallel job
scheduling, seeks to limit the influence of extremely short jobs on
slowdown by measuring the slowdown of such jobs relative to an
interactive threshold or bound, rather than the actual runtime:

BS =
Waittime +max (Runtime, bound)

max (Runtime,bound)
. (1)

To measure the quality of our scheduler for interactive transfers,
we further adapt the bounded slowdown metric. Specifically, we
modify the definition of BS above to account for the fact that in
the file transfer context, the runtime is not necessarily constant: the
time it takes to move a file from source to destination can vary ac-
cording to other loads on the system, because all resources involved
(source storage devices, source hosts, networks, destination hosts,
destination storage devices) are shared. In contrast, in traditional
parallel job scheduling, nodes are used in a dedicated fashion and
thus the runtime of a job on a given number of nodes can typically
be treated as fixed. Thus, we define bounded slowdown for a file
transfer task, BSFT , as follows:

BSFT =
Waittime +max (Runtime, bound)

max (TTideal,bound)
, (2)

where TTideal is the estimated transfer time (TT) under zero load
and ideal concurrency. We use the method shown in Listing 2 to
compute TTideal. This method is based on a model described in
our previous work [38] (summarized in §4.2). In the work reported
here, we set the bound to one second. In the rest of this paper, we
refer to BSFT as slowdown.

3.2.2 Batch File Transfers
Since batch transfers can tolerate longer delays, it is acceptable to
delay them relative to interactive transfers. Thus, bounded slow-
down by itself is not a suitable metric for batch transfers. Instead,
we define a bi-objective scheduling problem. First, as we want
batch transfers to use as much unused bandwidth as possible, we
focus on the fraction of the spare bandwidth used by batch trans-
fers. More specifically, ifBT is the total bandwidth available,BI is
the bandwidth consumed by interactive jobs, and BB is the band-
width used for batch jobs, we aim to maximize BB

BT −BI
.

A scheduler can maximize BB
BT −BI

just by prioritizing batch
jobs. Thus we must introduce a second objective. Suppose that
there are are no batch jobs in the system, and the average slowdown
for interactive jobs is SDI . Next, the scheduler adds a set of batch
jobs, but still prioritizes interactive jobs. Let the average slowdown
for interactive jobs now be SDI+B . Our second objective is to
maximize SDI

SDI+B
, i.e., to achieve a value as close to 1 as possible.

4. ADAPTIVE SCHEDULING
We formulate the load-aware scheduling problem (with interactive
jobs only) and describe our approach and the SEAL algorithm.

4.1 Problem Formulation
We consider a stream of file transfer requests, each defined by a
six-tuple: <source host, source file path, destination host, destina-
tion file path, file size, arrival time>. Requests arrive in an online
fashion, i.e., future transfer requests are not known a priori. Hosts
may have different capabilities (CPU, memory, disk speed, storage
area network, network interfaces, WAN connection) and thus the
maximum achievable end-to-end throughput may differ for each
<source host, destination host> pair. Load at a source, destina-
tion, and intervening network may also vary over time, as may the
achievable transfer rates between a source and destination. Each
host (source or destination) has a limit on the number of concurrent
transfers that it can support. The problem is to schedule transfers
so as to minimize average transfer slowdown.

4.2 Throughput Estimation
To estimate the throughput for a given transfer, we leverage a model
from our previous work [38]. This model combines extensive his-
torical data with a correction term that accounts for current external
load. It takes three pieces of input: first, a signature for a given
transfer, encompassing its concurrency level, total known concur-
rency at source (“known load at source”), and total known concur-
rency at destination (“known load at destination”); second, histori-
cal data (transfer concurrency, known loads, and observed through-
put) for the source-destination pair; and third, information (signa-
tures and observed throughputs) from the most recent transfers for
the source-destination pair. It produces an estimated throughput as
an output. We augmented the signature and models in the work
reported here to also include the transfer size.

This approach takes advantage of the fact that transfer load tends
to be stable over short time periods (for example, 30 minutes) but
can vary greatly over longer durations (for example, a day) [38].
We assume, furthermore, that we have access to historical data that
includes many combinations of signature values. Inevitably, while
this data will include recent transfers, we cannot expect to have
recent transfers with all possible combinations of signature values.

In order to combine the copious historical data with the sparser
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Figure 2: Example illustrating SEAL. The width of each task is its expected runtime (TTload), and the height of stacked running tasks is their
aggregate throughput. The text inside each box shows the amount of data remaining to be transferred and the task’s xfactor at that time. pf is
2. (a) Task 1 arrives and is scheduled. (b) Task 2 arrives and is scheduled. (c) Task 3 arrives and is queued because the system is saturated.
(d) Task 3’s xfactor is large enough to preempt Task 1. Task 1 is moved to the wait queue, and Task 3 is scheduled.

recent data, we determine the average historical throughput for a
particular source, destination, and signature; compute the differ-
ence between the throughput of recent transfers between the same
source and destination (but likely different signatures) and the his-
torical average for the corresponding transfer signature; and use
this data to correct the bandwidth predicted by the historical data
for throughput at the desired signature.

4.3 The SEAL Algorithm
SEAL is an online load-aware scheduling algorithm that schedules
data transfers adaptively to reduce average slowdown. It (a) queues
transfers so as to bound concurrency during high-load situations
and (b) increases transfer concurrency during low-load situations.

Scheduling strategies that aim to reduce slowdown typically use
an expansion factor (xfactor) parameter, the expected slowdown of
a task at any given time, when prioritizing tasks. Similarly to how
we modified the expression for BS to define BSFT in §3.2.1, we
define the expansion factor for a file transfer task, xfactorFT , as

xfactorFT =
Waittime+ TTload

TTideal
, (3)

where TTload is the estimated transfer time (TT) under the current
load conditions and TTideal is the estimated transfer time under
ideal (zero load and ideal concurrency) conditions. Both TTload

and TTideal are computed based on the model described in §4.2
(see Listing 2). Note the difference between BSFT and xfactorFT :
BSFT is a metric used to evaluate how well a task performed; it
requires the actual runtime of a task and can be computed only
after the task is completed. In contrast, xfactorFT is an expected
value, used as a priority value for tasks that have not yet completed
and for which actual runtime is therefore unknown. In the rest of
this paper, we use the term xfactor to refer to xfactorFT .

Before providing a formal description of the SEAL algorithm,
we explain the main ideas. Overall, it involves four decisions: (1)
Should a new transfer be scheduled or queued? (2) When schedul-
ing a transfer, what concurrency should be used? (3) When should
an already scheduled transfer be preempted? (4) When should the
concurrency of an ongoing file transfer be changed? In making
these decisions, SEAL uses both the models described in §4.2 and
the observed performance of current transfers, as follows.

First, SEAL always schedules waiting transfers if neither source
nor destination are saturated, with our models to determine the con-
currency for any transfer that is scheduled. We conclude that an
endpoint E is saturated if either of the following is true. (a) Aggre-
gate observed throughput for all transfers involving that endpoint
is close (≥95%) to the maximum possible throughput, as revealed
by previous empirical measurements (or historical data); we main-
tain a moving five-second average observed throughput for each
transfer for this purpose. (b) Increased concurrency results in a
proportionately insignificant increase in estimated throughput on
several active links involving that endpoint, meaning that if con-
currency is increased by a factor F , throughput is increased only
by a factor of 0.25 × F or less. (More specifically, we test three

source-destination pairs that are in current use, or less than three if
fewer are active. The rationale here is that if increased concurrency
results in little increase in throughput on a given link, then either
one or both endpoints are likely saturated. If this behavior is ob-
served on three links, E–X , E–Y , and E–Z, then it is likely that
endpoint E is saturated.)

Second, if the source or destination is saturated, the algorithm
can still interrupt one or more active transfer(s) to service waiting
requests, if in so doing it can reduce overall average slowdown.
As each such preemption incurs a connection establishment and
authentication cost, and we must also retransmit data from the last
checkpoint, we use a preemption factor (pf ) to control the number
of preemptions. pf is the minimum ratio of the xfactor of a waiting
task to the xfactor of a running task for preemption to occur. Note
that the inclusion of wait time when computing a task’s xfactor
(Equation 3) ensures that no task is delayed indefinitely.

Third, the algorithm dynamically increases the concurrency of
ongoing transfers if two conditions are met. First, there must not
be any queued transfers, and second, there is bandwidth available
due to completion of transfers.

We use the example in Figure 2 to illustrate some key aspects
of SEAL. We assume one source and one destination, each capable
of a maximum throughput of 5Gbps. Task T1, a 3GB file, arrives
at t = 0. Suppose that from the available 5Gbps bandwidth, a
single task can use up to 4Gbps with a suitably high concurrency.
Since no other tasks are running, T1’s TTload = TTideal = 6
secs, and its xfactor is 1. At t = 1, task T2, a 3GB file, arrives.
T2 is scheduled immediately since neither source nor destination is
saturated. The total available bandwidth is then split between the
two tasks: let us say that it is 2.5Gbps for each, which results in a
higher TTload and xfactor for T1. At time t = 2, task T3, a 2GB
file, arrives but is made to wait because the system is saturated. T3
has to wait until its xfactor becomes pf times the xfactor of one of
the running tasks, at which point it can preempt the running task
and get scheduled (we use a pf of 2 in this example). At t = 4.5,
T3’s xfactor becomes higher than pf times T1’s xfactor. Hence, T1
is preempted, and T3 is activated. At t = 4.5, T2 has ∼1.9 GB
left to transfer. At t = 10.6, T2 completes, and T1 is rescheduled.
At t = 10.9, T3 completes. T1 has ∼1.3 GB left to transfer but
can now return to its 4 Gbps transfer rate and thus completes at
t = 13.53. Thus, the turnaround times for T1, T2, and T3 are
13.53, 9.6, and 8.9 seconds, respectively. The average turnaround
time is 10.68 seconds.

For the same scenario, a default baseline algorithm that starts
tasks as soon as they arrive would behave as SEAL until T3 ar-
rives. T3 is scheduled upon arrival at time t = 2, and all tasks
begin to transfer at 1.67Gbps. T1 completes at t = 12.54, T2 at
t = 14.95, and T3 at t = 11.6. Thus, the turnaround times for
the three tasks are 12.54, 13.95, and 9.6 sec, respectively: an aver-
age of 12.03, more than 12% worse than SEAL. Furthermore, this
analysis assumes that the baseline and SEAL use the same concur-
rency; in practice, the baseline’s static concurrency would often be



sub-optimal, and thus its performance would be yet worse.

4.4 Formal Description of SEAL
We present pseudocode for SEAL in Listings 1 and 2. Table 1 de-
scribes the main data structures and terms. The function through-
put estimates throughput as described in §4.2 and the function sat-
urated determines whether an endpoint is saturated as described
in §4.3. The scheduling cycle repeats every n seconds, and NT
contains all new tasks that arrived in those n seconds. (In our im-
plementation, n = 0.5.) At the start of each cycle, completed tasks
are removed from the run queue R, new tasks are added to the wait
queue W , and xfactor values are updated (Listing 1, lines 2 to 6).

Table 1: Summary of terms used in SEAL (and STEAL).

Item Description
task A transfer task
NT Set of new tasks
R Priority queue of running tasks (ascending xfactor)
W Priority queue of waiting tasks (descending xfactor)
CL Candidate list of tasks for preemption
WT Wait time
cc Concurrency
size Transfer size
TTload Transfer time under current load (predicted by model)
TTideal Ideal transfer time (predicted by model)
TTtrans Time the task has not been idle so far
β User-defined variable for increasing concurrency
maxCC maximum concurrency allowed for a task
λ User-defined fraction to limit batch bandwidth [STEAL]

Listing 1 One scheduling cycle for SEAL

1: function SCHEDULER(NT )
2: W.enqueue(NT )
3: Remove all completed tasks from R
4: for task ∈ R,W do
5: task.xfactor← UpdateXfactor(task)
6: end for
7: if W.isEmpty() then
8: Restart tasks in R with higher cc if needed
9: end if

10: for task =W.peek() do
11: small = isSmall(task); CLsrc = CLdst = []
12: if !saturated(src) ∧ !saturated(dst) ∨ small then
13: Schedule task
14: else
15: if saturated(src) then
16: CLsrc ← FindTasksToPreempt(src,task)
17: end if
18: if saturated(dst) then
19: CLdst ← FindTasksToPreempt(dst,task)
20: end if
21: Preempt tasks in CLsrc ∪ CLdst and schedule task
22: end if
23: end for
24: end function

If there are no queued tasks for a scheduling cycle (i.e., W is
empty), SEAL increases the concurrency of running tasks if there
is unused bandwidth at both the source and destination for each
task (Listing 1, lines 7 to 9). This scenario can arise when some
running tasks complete, remaining running tasks cannot consume
additional bandwidth at their current concurrency, and there are no
waiting tasks. To maximize utilization in such scenarios, SEAL
considers the running tasks (R) in the descending order of remain-
ing bytes to transfer (additional bandwidth is assigned preferen-
tially to larger tasks) and attempts to increase their concurrency if

Listing 2 UpdateXfactor, FindThrCC, FindTasksToPreempt.

25: function UPDATEXFACTOR(task)
26: [idealCC, idealThr]← FindThrCC(task, true)
27: [bestCC, bestThr]← FindThrCC(task, false)
28: TTideal =

task.num_bytes_total
idealThr

29: TTload = task.num_bytes_left
bestThr + task.TTtrans

30: return task.WT+TTload
TTideal

31: end function
32: function FINDTHRCC(task, forIdealThr)
33: predThr=0; cc=0; dst_cc=src_cc=0
34: if ! forIdealThr then
35: dst_cc = dst.cc; src_cc = src.cc
36: end if
37: do
38: bestThr = predThr; cc++
39: predThr← throughput(src, dst, cc, src_cc, dst_cc, size)
40: while (predThr > bestThr ×β) ∧ (cc < maxCC)
41: return [cc, bestThr]
42: end function
43: function FINDTASKSTOPREEMPT(host, task)
44: Rhost = Tasks ∈ R associated with host; CL = []
45: do
46: rtask = Rhost.peek()
47: if rtask.xfactor > pf× task.xfactor then
48: CL.append(rtask)
49: end if
50: xfactor′ ← UpdateXfactor(task) s.t. R = R− CL
51: while (xfactor′ > R.last().xfactor) ∧ (rtask 6= Rhost.last())
52: return CL
53: end function
their source and destination are not saturated (saturation is deter-
mined using the procedure described in paragraph 4 in §4.3).

If W is not empty, then we consider two scenarios for each task
inW . If neither the task’s source nor destination is saturated, or the
task is small (<1GB), then we schedule it with appropriate concur-
rency (Listing 1, lines 12, 13). A task’s concurrency is determined
by using the FindThrCC function in Listing 2. Specifically, concur-
rency starts at 1 and is increased only if the new predicted through-
put is higher than the old by a user-defined threshold (e.g., 10%,
chosen empirically). A lower threshold results in each task getting
a higher concurrency and reduces the number of tasks that can run
concurrently, since every endpoint has a limit (set by system admin-
istrators) on total concurrent transfers. However, a higher threshold
also reduces the bandwidth that a single task can consume, leading
to suboptimal bandwidth utilization under low-load conditions.

Alternatively, the waiting task’s source and/or destination is satu-
rated. We then consider preempting tasks associated with the wait-
ing task’s source and/or destination. We evaluate each such task in
R, and add it to the candidate list of tasks (CL) for preemption if
its xfactor is lower than that of the waiting task by pf or more (pf is
the preemption factor described in §4.3. We tested several pf values
and determined that SEAL is not overly sensitive to this value: it
works well if pf is neither too close to 1.0, which causes too many
preemptions, nor too large, which results in no preemptions. The
results in §6.3 are with pf=1.5.) As each candidate task is added to
CL, the waiting task’s xfactor is recalculated but using a version of
R that does not include the tasks in CL. If the new xfactor is suf-
ficiently low, there are enough tasks in CL. Otherwise, we repeat
until either CL is large enough or no more tasks are available for
preemption. This case is covered in Listing 1, lines 15 to 21, and
FindTasksToPrempt function in Listing 2.

We note that if average load is less than 100%, then all transfers
will be scheduled, so that there is no possibility of starvation. Also,



our experiments show that SEAL reduces maximum slowdown rel-
ative to baseline algorithms for all traces that we consider.

4.5 Preemptive Transfers
The state required to preempt/restart a transfer task is just the file
offset (or, when transferring chunks of a file in parallel, a set of
start, end offsets for missing blocks). As long as the transfer mech-
anism supports checkpointing this information and allows partial
file transfers, one can preempt and restart a transfer with low over-
head. Most advanced data transfer tools, including the Globus
GridFTP used in our experiments, support these capabilities. The
default checkpointing interval for Globus GridFTP is 5 secs. In the
studies reported here, we set this interval to 1 sec, a value chosen
empirically to balance unnecessary retransmission for preempted
transfers against checkpointing overhead. We found that a check-
pointing interval of 1 sec shows no statistically significant addi-
tional overhead relative to 5 sec, but reduces preemption retrans-
mission overhead by 5x. (The biggest overhead incurred for a pre-
emption is the retransmission of data moved in the maximum 1 sec
and average 0.5 sec between the last checkpoint and preemption.)

Each transfer incurs a startup cost. Suppose that during a schedul-
ing cycle the scheduler determines that task A, with an average
throughput of T units per second, must be preempted and replaced
by task B of higher priority. If task A is suspended immediately
when this decision is made, then during the x secs that B takes to
start, T × x throughput will likely be unused between source and
destination. We avoid this waste by continuing to execute A until
the first checkpoint information is received, indicating that B has
started transferring data.

5. TYPE-AWARE SCHEDULING
We next formulate the load- and type-aware scheduling problem
and describe our approach and the STEAL algorithm.

5.1 Batch and Interactive Transfers
The classification of transfers into batch and interactive provides an
opportunity to schedule transfers adaptively such that batch trans-
fers have minimal impact on interactive transfer performance, but
use as much spare bandwidth as possible. This creates a bi-objective
optimization problem, with the two metrics stated earlier in §3.2.2.

In §4.1, we defined a file transfer request by a six-tuple. We now
add a boolean that indicates whether or not the transfer request is
batch, to obtain a seven-tuple: <source host, source file path, desti-
nation host, destination file path, file size, arrival time, batch>. All
assumptions made in §4.1 apply here: i.e., transfer requests arrive
online, resources involved have different capabilities, and load on
each resource can vary over time. In addition, we assume that trans-
fer requests with batch set to true want to use only the bandwidth
unused by interactive tasks and do not have any time constraints.
To avoid indefinite delay, a batch task can be set to switch to inter-
active after a certain amount of time.

5.2 The STEAL Algorithm
We update the SEAL algorithm as shown in Listings 3 and 4 to
define the STEAL algorithm, which schedules based on transfer
type. STEAL gives lower priority to batch tasks so that they use
only the bandwidth left after scheduling all interactive tasks. We
still prioritize batch tasks by xfactor, but multiply their xfactor val-
ues by a small fraction to lower their priority relative to interactive
tasks (Listing 3, lines 29.1 to 29.3). To maximize the use of excess
bandwidth by batch tasks, STEAL uses appropriate transfer con-
currency and eliminates preemption of batch tasks by other batch
tasks. Thus, a waiting batch task B2 cannot directly preempt a run-
ning batch task B1 even when B2’s priority becomes higher than
B1. (Assuming no other spare capacity, B2’s next chance to run
will thus be when B1 either completes or is pre-empted by an inter-
active task.)

Listing 3 Updates to the pseudocode presented in Listings 1 and 2.

function Scheduler
7: if W.isEmpty() ∨W.InteractiveTasks.isEmpty() then
8: Restart R.InteractiveTasks with higher cc if needed
9: end if

9.1: if W.isEmpty() then
9.2: Restart R.BatchTasks with higher cc if needed
9.3: end if
10.1: if isBatch(task) then
10.2: if !saturated’(λ, src) ∧ !saturated’(λ, dst) then
10.3: Schedule task
10.4: end if
10.5: continue
10.6: else
10.7: B = Batch tasks in R associated with src and/or dst
10.8: CL← FindBatchTasksToPreempt(task, B)
10.9: if !CL.isEmpty() then
10.10: Preempt all tasks in CL and schedule task; continue
10.11: end if
10.12: end if

function UpdateXfactor
29.1: if isBatch(task) then
29.2: return 0.00001× task.WT+TTload

TTideal
29.3: end if

Listing 4 FindBatchTasksToPreempt function.

54: function FINDBATCHTASKSTOPREEMPT(task, B)
55: goalThr← FindThrCC(task, false)[1] s.t. R = R−B
56: thr← FindThrCC(task, false)[1]; CL = []
57: do
58: btask = B.peek(); T = R− CL− btask
59: thr′ ← FindThrCC(task, false)[1] s.t. R = T
60: if thr′ > thr then
61: thr = thr′; CL.append(btask)
62: end if
63: while (thr < goalThr) ∧ (btask 6= B.last())
64: return CL
65: end function

Referring back to the Listings 3 and 4, there are three scenarios.
Scenario 1 (W is empty): STEAL first works to increase the con-

currency of running interactive tasks, with a preference for larger
tasks. If unused bandwidth remains and is more than that a fac-
tor 1-λ times the maximum achievable bandwidth (0 ≤ λ ≤ 1,
is a user-defined fraction to limit bandwidth for batch tasks) for
both source and destination, STEAL attempts to increase the con-
currency of running batch tasks to utilize the unused bandwidth.
This is shown in Listing 3, lines 7 to 9.3.

Scenario 2 (W is not empty; contains only batch tasks): STEAL
first attempts to increase the concurrency of running interactive
tasks (preferentially towards larger tasks): see Listing 3, lines 7
to 9. If unused bandwidth remains and is more than 1-λ times the
maximum achievable bandwidth for both source and destination,
STEAL attempts to schedule waiting batch tasks to utilize the un-
used bandwidth (Listing 3, lines 10.1 to 10.5). The function satu-
rated’ determines whether an endpoint is saturated as described in
paragraph 4 in §4.3 but by using λ to determine saturation limits.

Scenario 3 (W is not empty; contains at least one interactive
task; may or may not contain batch tasks): In the case of an in-
teractive task, there are two cases. In the first case, one or more
running batch tasks are associated with the source and/or the desti-
nation of the waiting interactive task under consideration. STEAL
then attempts to preempt one or more of these batch tasks to free up
the amount of bandwidth that the model predicts that the given in-



teractive task would obtain in their absence. Note that this step does
not necessarily preempt all batch tasks associated with the source
and the destination, as the interactive task may not be able to use
all available bandwidth at both source and destination. Details are
shown in Listing 3, lines 10.7 to 10.11 and Listing 4. In the second
case, no batch tasks are running. STEAL then behaves in the same
way as SEAL: see the two scenarios in paragraphs 3 and 4 in §4.4.
If there are batch tasks in W , they will be considered only after all
interactive tasks in W are scheduled, at which point the scenario is
the same as ‘Scenario 2’ above.

6. EXPERIMENTAL EVALUATION
We evaluated SEAL and STEAL with real traces in a wide-area en-
vironment. We use GridFTP [2], which extends the legacy File
Transfer Protocol to enable secure, reliable, and fast transport of
bulk data, as the underlying data transfer protocol for our exper-
iments. Various GridFTP implementations [3, 19, 26] are widely
used for high-speed data movement. We used the Globus imple-
mentation of GridFTP for our experiments. Although we evaluated
our algorithms in the context of GridFTP, the scheduling problem
that we consider is more general and our algorithms are generally
applicable for wide-area file transfers.

To achieve concurrency, we exploit the partial file transfer sup-
port (i.e., transfer X bytes of data from offset Y) found in Globus
GridFTP. In order to avoid additional overhead, we ensure that par-
tial transfer sizes are set to be larger than the bandwidth-delay prod-
uct for the given network link. It should be noted that GridFTP [3]
(as well as other tools such as BBCP [5]) can also split a file among
multiple TCP streams in order to accelerate transfers. However,
this method typically does not involve any parallelism at the stor-
age I/O level. In comparison, multiple independent transfers that
we use, with each transferring a partial file, achieves parallelism at
both network and storage levels.

We first describe the environment and traces, and then present re-
sults obtained when comparing SEAL with baseline algorithms and
when batch tasks are added and the STEAL algorithm is applied.

6.1 Environment
In order to simplify access and allow repeated experiments, we con-
ducted experiments in an environment involving one source and
five destinations. Analysis of GridFTP transfer logs, network re-
quirement reports from science communities [20], and cyberinfras-
tructure usage reports [55] suggest that a large fraction of band-
width consumption at many large facilities involves data transfers
to/from large/medium-scale facilities. Thus, this scenario captures
an important scheduling use case.

Our source is a DTN at Stampede, a supercomputer at the Texas
Advanced Computing Center. Destinations are DTNs at five other
supercomputing centers: the Blacklight supercomputer at the Pitts-
burgh Supercomputing Center; Darter at the University of Ten-
nessee; Gordon at the San Diego Supercomputer Center; Mason at
Indiana University; and Yellowstone at National Center for Atmo-
spheric Research. The various DTNs are dedicated for file transfer
and each has 10Gbps WAN connectivity. The DTN at Stampede
can achieve >9Gbps aggregate disk-to-disk throughput; Yellow-
stone, Gordon, Blacklight, Mason, and Darter can achieve∼8Gbps,
7Gbps, 4Gbps, 2.5Gbps, and 2Gbps, respectively. Since these re-
sources are production DTNs, we ran our experiments at night and
weekends so as not to disrupt production activities. Unless other-
wise noted, each result is an average of at least three runs.

6.2 Workload (Traces) Used for Evaluation
In order to allow repeatable experiments, we used real traces as
workloads. We obtained these traces from the anonymized usage
statistics that Globus GridFTP servers send to a usage collector.
These logs include transfer size, start time, and end time. Since our
goal is to handle situations in which resources are not (vastly) over-

Table 2: File size distribution and total number of file transfer tasks
for each of the four traces used in our experiments

Log 0-1M 1-10M 10-100M 100M-1G 1-10G All
25% 247 40 72 46 117 522
45% 907 168 334 209 232 1850
60% 728 11 34 318 290 1381
45%-4x 117 125 19 109 74 444

provisioned, we obtained our traces by first selecting the 10 servers
that transferred most bytes in a one month period, then picking the
day in that month in which the most bytes were transferred by those
servers, and finally using the log from the one server among those
10 that transferred the most bytes on that day.

Since our execution environment is a production infrastructure
in continuous use, we were limited in the length of our experi-
ments. Thus, we selected from the chosen 24-hour log three 15-
minute traces with different loads: the 25%, 45%, and 60% traces,
respectively. Average load of the 24-hour workload was ∼25%.
We looked at all non-overlapping 15-minute windows in the 24-
hour period and picked one with the same average load as the entire
workload (25%). The coefficient of variation of 1-minute average
concurrent transfers is approximately the same, too. We picked one
that had the highest load (∼60%), and one with∼45% load (which
is in between 25% and 60%). We define load as the total volume
of all file transfers in the 15-minute trace, divided by the maxi-
mum amount of data that the source can transfer in a 15-minute
period. Since the maximum achievable throughout for Stampede is
9.2Gbps, the maximum that it can transfer in 15 minutes is ∼1TB.
Thus, the total volume of the transfers in the 25%, 45%, and 60%
traces are ∼250GB, 450GB, and 600GB, respectively.

For our experiments, we replay the transfers recorded in these
traces. The Globus usage collector does not record destination
identifiers; to address this problem, we randomly split transfers
among the five destinations, with weighted probability based on
their capacities.

Table 2 shows the number of file transfers and file size distri-
bution for each trace. We use five categories: transfers with file
size, f : ≤1MB (0-1M); 1MB> f ≤10MB (1-10M); 10MB<
f ≤100MB (10-100M); 100MB< f ≤1GB (100M-1G); and
1GB< f ≤ 10GB (1-10G). There are no files >10GB in these
traces. We see that the traces are heavily weighted toward small
and medium files. This situation may change in the future, as sci-
ence communities move to larger and fewer files [20]. To capture
some of these trends, we created another 45%-4x trace by start-
ing with the 45% trace, selecting 25% of all files randomly, and
replacing each of the selected files with a transfer four times larger.

6.3 Evaluation of SEAL
We compare the performance of SEAL with that of three baseline
algorithms. The first, BaseCC1, replicates the common current
practice of scheduling each file transfer as it is submitted and using
only parallel TCP streams to improve performance. Specifically,
we use 2 parallel TCP streams as that was the most widely used
value in our logs; in addition, additional TCP streams did not pro-
vide any significant performance improvement in our experimental
environment, in the absence of storage-level parallelism.

The other two baseline versions, BaseCC2 and BaseCC4, use
both parallel storage operations and parallel TCP streams for indi-
vidual transfers, with static per-file concurrency settings of 2 and
4, respectively. (The performance of the baseline scheme with per-
file concurrency values >4 was worse than that of BaseCC2 and
BaseCC4.) For ≤10MB files, we use a concurrency (CC) of 1
for all algorithms, since splitting such small files can only hurt per-
formance. (This threshold was computed based on the bandwidth-
delay product of the source-destination links in our experimental
environment.)

We focus on two metrics: average slowdown (a ratio) and aver-



(a) Results for 25% trace

(b) Results for 45% trace

(c) Results for 60% trace

Figure 3: Percentage change in average turnaround time (left) and slowdown (center) relative to BaseCC1 for various algorithms; and (right)
percentage change in worst case turnaround time and slowdown for SEAL relative to best performing baseline. Negative values are better.

age turnaround time (in seconds). We report the percentage change
in these metrics for BaseCC2, BaseCC4, and SEAL relative to
BaseCC1. Specifically, we report the observed percentage change
in these metrics for the different file size classes. We also report the
percentage change in worst-case slowdowns and turnaround times
for SEAL relative to the best-performing baseline scheme, which is
either BaseCC2 or BaseCC4 depending on the trace.

Figures 3a–3c show results for the 25%, 45%, and 60% traces,
respectively. In each figure, the leftmost chart shows the percent-
age change in average turnaround times for SEAL and the baseline
algorithms BaseCC2 and BaseCC4 relative to the baseline algo-
rithm BaseCC1; the center chart shows the corresponding percent-
age changes in average slowdown; and the rightmost chart shows
the percentage changes in worst-case slowdowns and turnaround
times for SEAL compared to the best baseline algorithm. More
negative values are better in each case.

We see that SEAL performs better, in terms of both average slow-
down and turnaround time, than all baseline algorithms, both over-
all and for each individual file size category and trace. SEAL even
performs better for ≤10MB tasks, for which all algorithms use the
same parameters, because SEAL’s load awareness postpones larger
tasks when load is high. Also, blindly using higher CC for >10MB
tasks (along with scheduling all tasks upon arrival) hurts ≤10MB
tasks (BaseCC4 is almost always worst there). Even though the
priority for larger tasks (1-10G) grows relatively slowly in SEAL,
those tasks still benefit from load-aware scheduling and dynamic

adjustment of concurrency. 10-100M and 100M-1G tasks benefit
from relatively higher prioritization than 1-10G tasks, load-aware
scheduling and dynamic scaling of concurrency. But the range of
concurrency values for 10-100M tasks is limited as splitting these
relatively small files into too many pieces can hurt the performance.
Thus, 100M-1G tasks get the most benefit from SEAL.

Averaged over all task categories, SEAL outperforms the best
baseline algorithm in average slowdowns by 16%, 11%, and 22%,
for the three traces, respectively; and in average turnaround times
by 18%, 12%, and 25%. In terms of worst-case slowdown and
turnaround time, SEAL is significantly better than the best base-
line algorithm for most task categories; it reduces the worst-case
slowdowns and turnaround times by as much as 50% for some cat-
egories in 25% and 45% traces and by as much as 70% for some
categories in 60% trace. The factors that help SEAL perform con-
sistently better include load awareness, prioritization of tasks based
on their slowdowns, and sufficient but not excessive concurrency.

The baseline algorithms respond differently to changes in trace,
metric, and task category. For the lowest-load trace, BaseCC4 out-
performs BaseCC2 (on average across all transfers); BaseCC2 is
better when load increases. As another example, for 100M-1G
tasks in the 60% trace, BaseCC2 has a lower average turnaround
time, whereas BaseCC1 has a lower average slowdown. SEAL
outperforms the best baseline algorithm for both metrics, both in
terms of the overall average and in terms of the average for indi-
vidual task categories for all three traces. These results show that



Figure 4: Results for 45%-4x Trace. Percentage change in average turnaround time and slowdown compared to BaseCC1 for various
algorithms; and percentage change in worstcase turnaround time and slowdown for SEAL compared to best performing baseline.

SEAL performs well irrespective of trace characteristics.
Across the three traces, SEAL achieves the least improvement in

average slowdown and turnaround time for 45%, relative to the best
baseline algorithm. This trace had the most (1850) files. Since our
experiments were run on production environments, we limited the
total concurrency at any time to 80 (the maximum at most sites is
100) to avoid disrupting production activities. With many files, we
hit this total concurrency cap more often and had less flexibility in
increasing concurrency for big files. Recalling the motivation for
and description of the 45%-4x trace in §6.2, we do not expect this
limitation to arise with this trace, and indeed we see in Figure 4
that for this trace, SEAL again outperforms the other algorithms,
particularly for average slowdown. Specifically, SEAL improves
over BaseCC2 by only 11% for 45%, but by 25% for 45%-4x.
This result indicates that SEAL provides significant benefit over the
best baseline algorithm if it has reasonable flexibility in the concur-
rency values to use for tasks—yet can still perform better than the
best baseline even in constrained scenarios.

In a final set of SEAL experiments, we compared with a yet more
sophisticated baseline algorithm. The motivation for this study was
as follows. If one considers the results of just one trace, for ex-
ample 60%, one might argue that a baseline algorithm that simply
uses a different concurrency based on file size might perform better
than or as well as SEAL. As the center chart in Figure 3c shows,
the best baseline for files ≤1GB is BaseCC1 and for files >1GB
is BaseCC4. Therefore, we defined a new baseline BaseVary
algorithm that uses a concurrency of 1 for files ≤1GB and a con-
currency of 4 for files >1GB. Figure 5 shows that SEAL also out-
performs BaseVary for all task categories: by ≥20% overall and
≥40% for 100M-1G. This result shows that simply using a differ-
ent concurrency based on file size provides little benefit.

Figure 5: Percentage change in average turnaround time and slow-
down for BaseVary and SEAL compared to BaseCC2 for the
60% trace.

6.4 Evaluation of STEAL
We use four traces to evaluate STEAL: the 25%, 45%, and 60%
traces described in §6.2 plus a 60% high variation (60%-HV) trace
with greater variation in the load due to interactive tasks. The

one-minute-averaged concurrent transfer counts in the 60% and
60%-HV traces have standard deviations of 17.31 and 48.56, re-
spectively. (60%-HV is from the same GridFTP server as the oth-
ers, but for a different 24-hour period.)

For each trace, we then defined the original tasks to be inter-
active and added enough 50GB batch tasks to consume the band-
width unused by interactive tasks over the 15-minute duration. (By
setting the aggregate batch task size to match the unused band-
width, we simplify comparison of the different schemes, as even the
BaseVary and SEAL schemes, which do not differentiate batch
and interactive, can complete the interactive tasks during the 15-
minute experimental window.) We make the batch tasks available
to be scheduled right from the beginning of the 15-minute period,
and split them among the five destinations based on their capacities.
As noted in §6.2, the maximum data that can be transferred between
the source and destinations in our experimental environment in 15
minutes is ∼1TB, and the interactive load for 25%, 45%, 60%, and
60%-HV traces are ∼250GB, 450GB, 600GB and 600GB, respec-
tively. Thus, we used 17×50GB=850GB, 13(650GB), 10(500GB),
and 10(500GB) batch jobs, respectively, for the four traces.

We evaluate STEAL for λ = {1, 0.9, 0.8}, indicating that batch
tasks can use up to {100%, 90%, 80%}, respectively, of the band-
width unused by interactive jobs. We also evaluate BaseVary and
two SEAL variants, SEAL1 and SEAL2, with the following moti-
vation for the latter. Because SEAL does not distinguish between
interactive and batch tasks, the larger size of the batch tasks in our
experiments means that their priorities (xfactors) will increase at a
slower rate than that of interactive tasks (for same or similar end-
points) that arrive at the same time. Therefore, even under SEAL,
batch jobs may often be preempted and/or queued until their wait
time becomes high. Given that we cannot perform long experi-
ments, we thus define SEAL1 and SEAL2 as follows. In SEAL1,
batch tasks arrive at the start of the schedule for each 15-minute
trace. In SEAL2, we increase xfactors as if the batch tasks had ar-
rived an hour before the start of the schedule for 15-minute traces
under consideration. Thus interactive tasks have an advantage in
SEAL1 and batch tasks have an advantage in SEAL2.

As noted in §3.2.2 and §5.1, we have a bi-objective problem—
minimizing the average slowdown of interactive transfers and max-
imizing the utilization of unused bandwidth for batch transfers.
Both metrics introduced in §3.2.2 take a value between 0 and 1,
and a value close to 1 is desirable in each case. Also, in calculating
the normalized slowdown ( SDI

SDI+B
), the average slowdown for in-

teractive jobs, SDI , is obtained by executing interactive jobs alone
under SEAL.

Figure 6 shows that STEAL (for different λ values) performs
significantly better for interactive tasks, in terms of slowdown (y-
axis), than SEAL and BaseVary, as it explicitly prioritizes inter-
active over batch. STEAL/λ=1 is also better than BaseVary,
and comparable to SEAL1 and SEAL2, in its use of spare band-
width for batch tasks (x-axis). Note that the best performance is in
the upper-right corner in these graphs.

We attribute these good results to STEAL’s reduction of interfer-



(a) 25% trace (b) 45% trace (c) 60% trace (d) 60%-HV trace
Figure 6: Results when both minimizing average slowdown for interactive tasks and maximizing spare bandwidth utilization for batch tasks.
X-axis: ‘fraction of spare bandwidth used’ by batch tasks.

ence between batch and interactive tasks, maximum exploitation of
periods of no/low interactive load by saving batch tasks for those
periods, and elimination of batch tasks preempting one another. Al-
though SEAL2 performs the best in its use of spare bandwidth for
batch tasks, it does so with a significant negative impact on interac-
tive performance. STEAL uses less spare bandwidth for 60%-HV
than for 60% because 60%-HV trace’s high variation in interactive
load increases preemption of batch tasks. But the performance of
interactive tasks for 60%-HV is quite close to that for 60%.

With STEAL, lower λ values result in less bandwidth for batch
tasks. Thus, decreasing λ improves the performance of interactive
tasks—meaning that batch tasks (being larger) are stealing band-
width from interactive tasks. Although STEAL gives batch tasks
lower priority, those batch tasks that get scheduled still get the
best concurrency value (a relative higher value since batch tasks
are larger) for that task. System operators can tune λ to trade off
interactive task performance and system utilization.

We also see in Figure 6 that the fraction of the spare bandwidth
used by BaseVary is best for 25% and gets worse as the interac-
tive load increases. This result is expected because 25% has many
batch tasks and thus BaseVary has a high aggregate concurrency
value throughout the schedule, resulting in higher utilization. How-
ever, the high aggregate concurrency value for batch tasks severely
affects interactive performance, as the batch tasks consume 80% of
the total concurrency allowed when they are running.

In summary, in the presence of batch tasks, STEAL/λ=1 is 63%,
21%, and 39% better than BaseVary, SEAL1, and SEAL2, re-
spectively, in terms of the average slowdown for interactive tasks,
averaged across the four traces; the fraction of spare bandwidth
used by batch tasks with STEAL/λ=1 is 18% better, 1.75% worse,
and 7.5% worse than BaseVary, SEAL1, and SEAL2 respec-
tively, averaged across the four traces. We also measured the aver-
age turnaround time for interactive tasks for all the schemes consid-
ered above and observed similar trends; we do not present those re-
sults here due to space constraints. We thus conclude that STEAL’s
differentiation between interactive and batch tasks improves the re-
sponse time of interactive tasks significantly with little negative im-
pact on the bandwidth used by batch tasks as compared to SEAL.

7. RELATED WORK
Coffman et al. [17] established that scheduling file transfers in a
distributed network to ensure minimum completion time is NP-
complete. Many heuristics have since been proposed [28, 29].
However, because these algorithms require that transfer requests
be known in advance, they normally cannot be applied in practice.

Content distribution networks (CDNs) [52] and BitTorrent [18]
are widely used for high-speed distribution of/access to popular
files. However, our experience, based for example on GridFTP data
[5000+ servers move >1.5 PB (>25M files) per day on average, as
of July, 2015] is that much science traffic involves different pat-
terns: data are not widely replicated (as in BitTorrent) nor multi-

cast (as in CDNs). BitTorrent employs incentive-based file sharing
where peers that contribute more data at faster rates get preferen-
tial treatment for downloads. Our methods could also be applied to
manage resources in CDNs and BitTorrent.

Foster et al. [27] use differentiated service mechanisms to sched-
ule file transfers of differing priority, but do not consider concur-
rency. Algorithms have been developed that use multiple paths
to improve transfer performance [14]. In the work reported here,
transfers take default network paths. The Stork [39] data placement
scheduler allows the use of directed acyclic graph schedulers to en-
capsulate dependencies between computation and data movement.
Our algorithms can be incorporated into a system like Stork. Re-
searchers have proposed differentiated treatment of traffic classes
by using priority queues at routers or similar techniques [27, 32,
41, 42]. Our approach, in contrast, does not require router support,
kernel modifications, or additional storage infrastructure.

Wolski [54], Vazhkudai et al. [51], and Lu et al. [44] proposed
methods for predicting transfer performance. While we focus in-
stead on scheduling wide-area file transfers, we can use some of
these methods for throughput estimation in applicable scenarios.

8. CONCLUSIONS
We have defined two new algorithms for efficient online schedul-
ing of wide-area file transfers. The first, SEAL, uses data-driven
models of transfer performance to vary the concurrency of individ-
ual transfers, while also queuing and preempting tasks, subject to
constraints on the aggregate concurrency for all transfers. By thus
delaying some transfers, SEAL improves average slowdown for all
transfers when load is high; by increasing concurrency for other
transfers, it increases aggregate throughput when load is low. Our
second algorithm, STEAL, uses user-supplied transfer types to fur-
ther optimize schedules. STEAL treats batch and interactive trans-
fers differently, allocating bandwidth unused by interactive trans-
fers to batch transfers, while being largely non-intrusive to interac-
tive transfers.

We evaluated our algorithms by using real traces and on a pro-
duction system. We showed significant improvements over the state
of the art in terms of average and worst-case slowdowns as well as
turnaround times. We also showed that STEAL can allow batch
tasks to successfully use a large portion of the excess bandwidth,
while being significantly better than SEAL in terms of sustaining
the performance of interactive tasks.

9. ACKNOWLEDGMENTS
This material is based upon work supported by the U.S. Depart-

ment of Energy, Office of Science, under contract number DE-
AC02-06CH11357 and Office of Advanced Scientific Computing
Research under the Next Generation Networking for Science Pro-
gram funded RAMSES project, and the National Science Founda-
tion, under grants ACI-1339757, ACI-1339798 and ACI-1440761.



10. REFERENCES
[1] K. Aida, H. Kasahara, and S. Narita. Job scheduling scheme

for pure space sharing among rigid jobs. In Proceedings of
the Workshop on Job Scheduling Strategies for Parallel
Processing, IPPS/SPDP ’98, pages 98–121, London, UK,
1998. Springer-Verlag.

[2] W. Allcock. GridFTP protocol specification (Global Grid
Forum recommendation GFD.20), 2003.

[3] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link,
C. Dumitrescu, I. Raicu, and I. Foster. The Globus Striped
GridFTP Framework and Server. In Proceedings of the 2005
ACM/IEEE Conference on Supercomputing, SC ’05, pages
54–, Washington, DC, USA, 2005. IEEE Computer Society.

[4] B. Allen, J. Bresnahan, L. Childers, I. Foster,
G. Kandaswamy, R. Kettimuthu, J. Kordas, M. Link,
S. Martin, K. Pickett, and S. Tuecke. Software as a service
for data scientists. Commun. ACM, 55(2):81–88, Feb. 2012.

[5] BaBar Copy. http://slac.stanford.edu/~abh/bbcp/.
[6] G. Bell and M. Ernst. HEP Community Summer Study 2013

Computing Frontier: Networking. In Snowmass’2013.
[7] Belle-II Experiment Network Requirements, Oct. 2012.

http://www.osti.gov/scitech/servlets/purl/1171367.
[8] Biological and Environmental Research Network

Requirements, Nov. 2012. http://www.es.net/assets/pubs_pre
sos/BER-Net-Req-Review-2012-Final-Report.pdf.

[9] K. Bergman, V. Chan, D. Kilper, I. Monga, G. Porter, and
K. Rauschenbach. Scaling terabit networks: Breaking
through capacity barriers and lowering cost with new
architectures and technologies. NSF Workshop, 2013.

[10] User facilities of the Office of Basic Energy Sciences, 2009.
http://science.energy.gov/~/media/bes/suf/pdf/BES_Facilitie
s.pdf.

[11] Basic Energy Sciences Network Requirements Workshop,
September 2010 - Final Report. http://www.es.net/assets/Up
loads/BES-Net-Req-Workshop-2010-Final-Report.pdf.

[12] Office of Science and Technology Policy, Executive Office of
the President. Fact Sheet: Big Data Across the Federal
Government. Washington, D.C., Mar. 29, 2012.
https://www.whitehouse.gov/sites/default/files/microsites/os
tp/big_data_fact_sheet_final.pdf.

[13] TCP backing off due to burstiness. http://fasterdata.es.net/as
sets/fasterdata/Using-tc-with-OSCARS-curcuits.pdf.

[14] Z. Cai, V. Kumar, and K. Schwan. IQ-Paths: Self-regulating
data streams across network overlays. In Proceedings of the
15th IEEE International Symposium on High Performance
Distributed Computing, 2006.

[15] C. Castillo, G. Rouskas, and K. Harfoush. On the design of
online scheduling algorithms for advance reservations and
QoS in Grids. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2007), pages 1–10, March
2007.

[16] A. Clematis, A. Corana, D. D’Agostino, A. Galizia, and
A. Quarati. Job-resource matchmaking on Grid through
two-level benchmarking. Future Gener. Comput. Syst.,
26(8):1165–1179, Oct. 2010.

[17] E. G. Coffman, Jr., M. R. Garey, D. S. Johnson, and A. S.
LaPaugh. Scheduling file transfers in a distributed network.
In Proceedings of the Second Annual ACM Symposium on
Principles of Distributed Computing, PODC ’83, pages
254–266, New York, NY, USA, 1983. ACM.

[18] B. Cohen. Incentives build robustness in bittorrent. In 1st
International Workshop on Economics of P2P Systems, June
2003.

[19] dcache GridFTP. http://trac.dcache.org/wiki/gridftp.
[20] DOE data crosscutting requirements review, 2013.

http://science.energy.gov/~/media/ascr/pdf/program-docume
nts/docs/ASCR_DataCrosscutting2_8_28_13.pdf.

[21] DOE High Performance Computing Operational Review,
2014. http://www.osti.gov/scitech/servlets/purl/1163236.

[22] Data Transfer Nodes.
http://fasterdata.es.net/science-dmz/DTN/.

[23] ESnet Strategic Plan. http://www.es.net/assets/Uploads/ESne
t-Strategic-Plan-March-2-2013.pdf.

[24] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn.
Parallel job scheduling – a status report. In Proceedings of
the 10th International Conference on Job Scheduling
Strategies for Parallel Processing, JSSPP’04, pages 1–16,
Berlin, Heidelberg, 2005. Springer-Verlag.

[25] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C.
Sevcik, and P. Wong. Theory and practice in parallel job
scheduling. In Proceedings of the Job Scheduling Strategies
for Parallel Processing, IPPS ’97, pages 1–34, London, UK,
1997. Springer-Verlag.

[26] J. Feng, L. Cui, G. Wasson, and M. Humphrey. Toward
seamless Grid data access: Design and implementation of
GridFTP on .net. In Proceedings of the 6th IEEE/ACM
International Workshop on Grid Computing, GRID ’05,
pages 164–171, Washington, DC, USA, 2005. IEEE
Computer Society.

[27] I. Foster, M. Fidler, A. Roy, V. Sander, and L. Winkler.
End-to-end quality of service for high-end applications.
Comput. Commun., 27(14):1375–1388, Sept. 2004.

[28] A. Giersch, Y. Robert, and F. Vivien. Scheduling tasks
sharing files from distributed repositories. In M. Danelutto,
M. Vanneschi, and D. Laforenza, editors, Euro-Par 2004
Parallel Processing, volume 3149 of Lecture Notes in
Computer Science, pages 246–253. Springer Berlin
Heidelberg, 2004.

[29] A. Goel, M. R. Henzinger, S. Plotkin, and E. Tardos.
Scheduling data transfers in a network and the set scheduling
problem. In Proceedings of the Thirty-first Annual ACM
Symposium on Theory of Computing, STOC ’99, pages
189–197, New York, NY, USA, 1999. ACM.

[30] GridFTP Usage Stats Collection. http://toolkit.globus.org/too
lkit/docs/6.0/gridftp/admin/#gridftp-usage.

[31] Y. Gu and R. L. Grossman. UDT: UDP-based data transfer
for high-speed wide area networks. Comput. Netw.,
51(7):1777–1799, May 2007.

[32] C. Guok, D. Robertson, M. Thompson, J. Lee, B. Tierney,
and W. Johnston. Intra and Interdomain Circuit Provisioning
Using the OSCARS Reservation System. In 3rd
International Conference on Broadband Communications,
Networks, and Systems, 2006.

[33] S. Habib, V. Morozov, H. Finkel, A. Pope, K. Heitmann,
K. Kumaran, T. Peterka, J. Insley, D. Daniel, P. Fasel,
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